

# Evaluating Adapter-based Knowledge-enhanced Language Models in the Biomedical Domain

Alexander Fichtl

sebis

22.05.2023, Master Thesis Kick-off

Chair of Software Engineering for Business Information Systems (sebis) Department of Computer Science School of Computation, Information and Technology (CIT) Technical University of Munich (TUM) wwwmatthes.in.tum.de

## Outline

- 1. Motivation
- 2. Background
  - Knowledge Enhanced Language Models
  - Adapters
  - BLURB
- 3. Research Concept
  - Research Questions
  - Experiment Methodology
- 4. Progress
- 5. Timeline



### **Motivation**

Microsoft Research 🧼 @MSFTResearch

BioGPT, a domain-specific generative model pretrained on large-scale biomedical literature, has achieved human parity, outperformed other general and scientific LLMs, and could empower biologists in various scenarios of scientific discovery. Learn more: msft.it/6014eAnLq



#### **Original Investigation**

April 28, 2023

#### Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum

John W. Ayers, PhD, MA<sup>1,2</sup>; Adam Poliak, PhD<sup>3</sup>; Mark Dredze, PhD<sup>4</sup>; <u>et al</u>

#### **Key Points**

**Question** Can an artificial intelligence chatbot assistant, provide responses to patient questions that are of comparable quality and empathy to those written by physicians?

**Findings** In this cross-sectional study of 195 randomly drawn patient questions from a social media forum, a team of licensed health care professionals compared physician's and chatbot's responses to patient's questions asked publicly on a public social media forum. The chatbot responses were preferred over physician responses and rated significantly higher for both quality and empathy.

**Meaning** These results suggest that artificial intelligence assistants may be able to aid in drafting responses to patient questions.

## MIT News

### Large language models help decipher clinical notes

Researchers used a powerful deep-learning model to extract important data from electronic health records that could assist with personalized medicine.

Rachel Gordon | MIT CSAIL December 1, 2022



[Mi23] Microsoft: BioGPT: generative pre-trained transformer for biomedical text generation and mining [Go22] Gordon, R.: Large language models help decipher clinical notes [Av23] Ayers, J., Poliak, A., Dredze, M., et al.: Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum

### Background: What are KELMs?



[Wa21a] Wang, R., Tang, D., Duan, N., Wei, Z., Huang, X., Ji, J., Cao, G., Jiang, D., Zhou, M.: K-ADAPTER: Infusing Knowledge into Pre-Trained Models with Adapters

## Background: What are KELMs?

# ТШ

### Medical natural language inference task (NLI):

- Patient Premise: No history of blood clots or DVTs, has never had chest pain prior to one week ago
- Hypothesis: Patient has angina
- Correct Classification: Entailment



## Background: What are KELMs?



### Relevance

- Active research area
- LMs lack knowledge awareness
- Superior performance over vanilla LMs

### Approach Variety

- Input Focused
- Architecture Focused
- Output Focused

### Shortcomings

- Long Training Periods
- · Catastrophic forgetting when several knowledge sources are injected
  - → Lightweight "Adapters" retain original parameters and enable quick resource efficient knowledge injection

[We21a] Wei, X., Wang, S., Zhang, D., Bhatia, P., Arnold A.: Knowledge Enhanced Pretrained Language Models: A Compreshensive Survey [Wa21a] Wang, R., Tang, D., Duan, N., Wei, Z., Huang, X., Ji, J., Cao, G., Jiang, D., Zhou, M.: K-ADAPTER: Infusing Knowledge into Pre-Trained Models with Adapters



### Background: What is an Adapter?





### Background: What is an Adapter?



Transformer Layer



### Background: What is an Adapter?





Transformer Layer

[Pf20a] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: AdapterHub: A Framework for Adapting Transformers

### Background: BLURB



| Dataset      | Task                   | Train  | Dev   | Test  | EvaluationMetrics |
|--------------|------------------------|--------|-------|-------|-------------------|
| BC5-chem     | NER                    | 5203   | 5347  | 5385  | F1entity-level    |
| BC5-disease  | NER                    | 4182   | 4244  | 4424  | F1entity-level    |
|              |                        |        |       |       |                   |
| NCBI-disease | NER                    | 5134   | 787   | 960   | F1entity-level    |
| BC2GM        | NER                    | 15197  | 3061  | 6325  | F1entity-level    |
| JNLPBA       | NER                    | 46750  | 4551  | 8662  | F1entity-level    |
| EBMPICO      | PICO                   | 339167 | 85321 | 16364 | MacroF1word-level |
| ChemProt     | RelationExtraction     | 18035  | 11268 | 15745 | MicroF1           |
| DDI          | RelationExtraction     | 25296  | 2496  | 5716  | MicroF1           |
| GAD          | RelationExtraction     | 4261   | 535   | 534   | MicroF1           |
| BIOSSES      | SentenceSimilarity     | 64     | 16    | 20    | Pearson           |
| HoC          | DocumentClassification | 1295   | 186   | 371   | MicroF1           |
| PubMedQA     | QuestionAnswering      | 450    | 50    | 500   | Accuracy          |
| BioASQ       | QuestionAnswering      | 670    | 75    | 140   | Accuracy          |



# **BLURB**

Biomedical Language Understanding and Reasoning Benchmark

### **Research Concept: Research Questions**



Can adapter-based approaches outperform other knowledge injection methods in downstream tasks (Blurb, claim verification)?

- Literature review
- Thesis experiments

How does the performance of KELMs in closed domains compare to open domain performance?

- Literature review
- Thesis experiments

How do models trained on a private ontology (e.g., OntoChem) compare to models trained on public ontologies (e.g., UMLS)?

- Thesis experiments
- SciWalker

Is there interest in the results of this thesis amongst medical professionals and can they make use of biomedical KELMs?

- Survey and Interviews
- Mini-workshops on knowledge enhancement with adapters

## Research Concept: Experiment Methodology



| Recreation of previous work                     | Model Training                                                                                                           |                                                                                 |  |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
| Pipeline tweaking<br>SciWalker Knowledge Graphs | Common models     (DubModPEDT_SoiPEDT                                                                                    | Model Evaluation and<br>Comparison to Related Work                              |  |  |
|                                                 | <ul> <li>FubMedBERT, SciBERT,<br/>BioLinkBERT etc.)</li> <li>SciWalker data, UMLS</li> <li>V100 Colab and LRZ</li> </ul> | <ul> <li>Quantitative (Blurb benchmark)</li> <li>Qualitative probing</li> </ul> |  |  |

- Survey and interviews with experts about relevance of results
- Mini-workshop on knowledge enhancement with adapters

Progress





Timeline





Thanks!





# **TLM** sebis

ATIK INFORMATI

B.Sc. Alexander Fichtl

Technical University of Munich (TUM) TUM School of CIT Department of Computer Science (CS) Chair of Software Engineering for Business Information Systems (sebis)

Boltzmannstraße 3 85748 Garching bei München

alexander.fichtl@tum.de +49 160 97578593

wwwmatthes.in.tum.de

## Appendix A: PubMedQA

#### **Question:**

Do preoperative statins reduce atrial fibrillation after coronary artery bypass grafting?

#### Context:

(*Objective*) Recent studies have demonstrated that statins have pleiotropic effects, including anti-inflammatory effects and atrial fibrillation (AF) preventive effects [...] (*Methods*) 221 patients underwent CABG in our hospital from 2004 to 2007. 14 patients with preoperative AF and 4 patients with concomitant valve surgery [...] (*Results*) The overall incidence of postoperative AF was 26%. *Postoperative AF was significantly lower in the Statin group compared with the Non-statin group (16% versus 33%, p=0.005)*. Multivariate analysis demonstrated that independent predictors of AF [...] <u>Long Answer:</u>

(*Conclusion*) Our study indicated that preoperative statin therapy seems to reduce AF development after CABG. <u>Answer:</u> yes

Figure 1: An instance (Sakamoto et al., 2011) of Pub-MedQA dataset: Question is the original question title; Context includes the structured abstract except its conclusive part, which serves as the Long Answer; Human experts annotated the Answer yes. Supporting fact for the answer is *highlighted*.

## **Appendix B: Transformers**

